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Chapter 8

SECTION TOPIC =
Integration by parts =

Integration techniques, L'HOpital's Rule, and improper integrals

8.2
Integration by parts

The first new integration technique we present in this chapter is called inte-
gration by parts. This technique applies to a wide variety of functions and is
particularly useful for integrands involving a product of algebraic and tran-
scendental functions. For instance, integration by parts works well with inte-
grals like [ x In x dx, [ x%e* dx, and [ e* sin x dx.

Integration by parts is based on the formula for the derivative of a
product
%[uv] =u%xv—+v(f—dz=uv’ + vu'
where both u and v are differentiable functions of x. If #’ and v’ are continu-
ous, then we can integrate both sides of this equation to obtain

uv=fuv'dx+fvu’dx=fudv+fvdu

By rewriting this equation, we obtain the following theorem.

THEOREM 8.1

INTEGRATION BY PARTS
If u and v are functions of x and have continuous derivatives, then

fudv=uv—fvdu

This formula expresses the original integrand in terms of another inte-
gral. Depending on the choices for u and dv, it may be easier to evaluate the
second integral than the original one. Since the choices of u and dv are critical
in the integration by parts process, we suggest the following guidelines.

GUIDELINES FOR
INTEGRATION BY PARTS

1. Try letting dv be the most complicated portion of the integrand that fits
a basic integration formula. Then u will be the remaining factor(s) of
the integrand.

2. Try letting u be the portion of the integrand whose derivative is a sim-
pler function than u. Then dv will be the remaining factor(s) of the
integrand.

‘ Remark These are only suggested guidelines, and they should not be followed
blindly or without some thought. Furthermore, it is usually best to consider assigning
dv first.
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EXAMPIE 1  Integration by parts

Evaluate [ xe* dx.

Solution: To apply integration by parts, we want to write the integral in the
form [ u dv. There are several ways to do this.

Jwed, @, [ Oy, [ @)

u dv u dv u dv u dv

Following our guidelines, we choose the first option, since e* is the most
complicated portion of the integrand that fits a basic integration formula.
Thus, we have

dv = e* dx = v=fdv=fexdx=ex
u=x = du = dx

Now, by the integration by parts formula, we have

udv = uv — v du
J J

fxexdx=xe?‘—fe"dx=xex—ex+C e

l Remark Note in Example 1 that it is not necessary to include a constant of integration
when solving v = [ e* dx = ¢* + C;. To illustrate this, we replace v by v + C, in the
general formula to obtain

fudv=u(v+Cl)—f(v+C1)du=uv+C1u—fC1du—fvdu

=uv+C1u—C1u—fvdu=uv-—fvdu

EXAMPIE 2 Integration by parts

Evaluate [ x In x dx.

Solution: In this case x is more easily integrated than In x. Furthermore, the
derivative of In x is simpler than In x. Therefore, we let dv = x? dx.

3
=2 B = 2 e X
dv = x"dx vfxdx 3

Therefore, we have

3

_x3 1 2

=3 In x 3 x° dx
x3 x>

=X Inx-2 |
3 In x 9 + C
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One unusual application of integration by parts involves integrands con-
sisting of a single factor, such as [ In x dx or [ arcsin x dx. In such cases, we
let dv = dx, as illustrated in the next example.

EXAMPIE 3 An integrand with a single term

Evaluate

f 01 arcsin x dx
Solution: Letting dv = dx, we have
dv = dx B> y= f dx =x

u = arcsin x = du=—-——l—~2dx
1—x

Therefore, we have

farcsinxdx=xarcsinx—f%dx
—x

= x arcsin x + % f (1 — x»~V2(—2x) dx
=xarcsinx + V1 —x*+C

Now, using this antiderivative, we evaluate the definite integral as follows:

1
fol arcsin x dx = [x arcsin x + V1 —xz]
0

T ({1 -

=3 1

The area represented by this definite integral is shown in Figure 8.1.

It (1,7/2) g

y = arcsin x

FIGURE 8.1

It may happen that an integral requires repeated application of the inte-
gration by parts formula. This is demonstrated in the next example.
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EXAMPLE 4 Repeated application of integration by parts

Evaluate [ x? sin x dx.

Solution: We may consider x” and sin x to be equally easy to integrate. How-
ever, the derivative of x* becomes simpler, whereas the derivative of sin x
does not. Therefore, we let u = x* and write

dv = sin x dx &= v=fsinxdx=—cosx
u=x* = du=2xdx
and it follows that

fxzsinxdx=—xzcosx+f2xcosxdx

Now, we apply integration by parts to the new integral. We let u = 2x and
write

dv = cos x dx = v=fcosxdx=sinx
u=72x E:>du=2dx
and it follows that
f2xcosxdx=2xsinx—f2sinxdx=2xsinx+2cosx+C

Combining these two results, we have

fxzsinxdx=—xzcosx+2xsinx+2cosx+C =

When making repeated application of integration by parts, you need to
be careful not to interchange the substitutions in successive applications. For
instance, in Example 4 our first substitution was u = x* and dv = sin x dx. If,
in the second application, we had switched the substitution to

[2xax=2x

Il

dv=2xdx = v

u=cosx = du

—sin x dx

we would have obtained

fxzsinxdx——xzcosx+f2xcosxdx

—xzcosx+xzcosx+fxzsinxdx

fxzsinxdx

thus undoing the previous integration and returning to the original integral.
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When making repeated applications of integration by parts, you should
also watch for the appearance of a constant multiple of the original integral.
This is illustrated in the next example.

EXAMPLE 5 Repeated application of integration by parts

Evaluate [ e* cos 2x dx.

Solution: Our guidelines fail to help with a choice of u and dv, so we arbitrar-
ily choose dv = e* dx and u = cos 2x. (You might try verifying that the
choice of dv = cos 2x dx and u = e¢* works equally well.)

dv=e"dx => v=fexdx=ex

~ u=cos 2x ™= du = —2 sin 2x dx
and it follows that

fe"cos2xdx=exc052x+2fe"sin2xdx

Making the same type of substitutions for the next application of integration
by parts, we have

dv=¢e"dx = v=fexdx=ex
u = sin 2x &= du = 2 cos 2x dx
and it follows that
fe"siandx=exsin2x—2fexcos2xdx
Therefore, we have
fe"costdx=e"cost+2exsin2x—4fexcos2xdx

Now, since the right-hand integral is a constant multiple of the original inte-
gral, we add it to the left side of the equation to obtain

5fexcos2xdx=excos2x+2e"sin2x

f e*cos 2x dx = %ex cos 2x + %e" sin 2x + C Divide by 5
=

The integral in the next example is an important one. In Section 8.4 we
will see that it is used in finding the arc length of a parabolic segment. (See
Example 8 in Section 8.4.)
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EXAMPLE 6  Integration by parts

Evaluate [ sec® x dx.

Solution: 'The most complicated portion of the integrand that can be easily
integrated is sec® x. Letting dv = sec? x dx and u = sec x, we have

dv = sec® x dx —> v=fseczxdx=tanx

U =secx —> du = sec x tan x dx

Therefore, we have

fsec3xdx=secxtanx—fsecxtanzxdx

secxtanx—fsecx(seczx— 1) dx

secxtanx—fsec3xdx+fsecxdx

2 f sec? x dx = sec x tan x + f sec x dx Collect like integrals
3 1 1
fsec xdx=75ecxtanx+71n1sccx+tanx|+C i

Since we developed the integration by parts formula from the Product
Rule for derivatives, we would expect many of our examples of this technique
to involve a product. However, integration by parts is also useful in cases
where the integrand is a quotient, as demonstrated in the next example.

EXAMPLE 7 An integrand involving a quotient

Evaluate So% i
f (x + 1)?

Solution: Since 1/(x + 1) is easily integrated, we make the following
choices:

__dx _ s ax 1
V= rTE ™ v f(x+1)2 x+1
u = xe* > du=@xe*+eY)de=¢e*(x+1)dx

Thus, we have
xe* N e T O o =il
f(x+1)2dx_xe<x+l> f(x+1)e<x+l)dx

xe*
+ X
x+1 fedx

___xer i __¢
= x+1+e+C x+1+C |

X
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EXAMPLE 8 An application of integration by parts

Find the centroid of the region bounded by the graph of y = sin x and the
x-axis, 0 =< x < /2.

Solution: Using the formulas presented in Section 7.6, together with Figure
8.2, we have

_ _ w2 . _ w2 _
arca = A = sin x dx = —cos x =1
0 0

—_ 1 papsinx .
y—AfO — (sin x) dx

Half angle formula

_i /2 _
=u fo (1 — cos 2x) dx

4

_ 1[ sian]’”2 T
g b
0 8

] _
E=Lfmexﬁ
A Jo

Now, using integration by parts on this integral, we let dv = sin x dx, u = x,
and obtain v = —cos x and du = dx. Thus, we have

fxsinxdx=-—xcosx+fcosxdx=—xcosx+sinx+C

Now, we determine x to be

/2
X =|—xcosx+sinx =1
0

Therefore, we conclude that the centroid of the region is (1, 7/8). 3

As you gain experience in using integration by parts, your skill in deter-
mining # and dv will increase. In the following summary, we list several
common integrals with suggestions for the choice of u and dv.

SUMMARY OF COMMON
INTEGRALS USING
INTEGRATION BY PARTS

1. fx"e"xdx, fx”sinaxdx, fx”cosaxdx

Let u = x" and dv = e® dx, sin ax dx, or cos ax dx. (Examples 1, 4)
2. f x"{ In x dx, f x" arcsin ax dx, f x" arctan ax dx

Let u = In x, arcsin ax, or arctan ax and dv = x" dx. (Examples 2, 3)
3 f e* sin bx dx, f e** cos bx dx

Let u = sin bx or cos bx and dv = e¢* dx. (Example 5)
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